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Abstract—We consider efficient methods for the recovery of
block-sparse signals—i.e., sparse signals that have nonzero entries
occurring in clusters—from an underdetermined system of linear
equations. An uncertainty relation for block-sparse signals is
derived, based on a block-coherence measure, which we introduce.
We then show that a block-version of the orthogonal matching
pursuit algorithm recovers block �-sparse signals in no more
than � steps if the block-coherence is sufficiently small. The same
condition on block-coherence is shown to guarantee successful
recovery through a mixed �����-optimization approach. This
complements previous recovery results for the block-sparse case
which relied on small block-restricted isometry constants. The
significance of the results presented in this paper lies in the fact
that making explicit use of block-sparsity can provably yield
better reconstruction properties than treating the signal as being
sparse in the conventional sense, thereby ignoring the additional
structure in the problem.

Index Terms—Basis pursuit, block-sparsity, compressed sensing,
matching pursuit.

I. INTRODUCTION

T HE framework of compressed sensing is concerned with
the recovery of an unknown vector from an underdeter-

mined system of linear equations [1], [2]. The key property ex-
ploited for recovery of the unknown data is the assumption of
sparsity. More concretely, denoting by an unknown vector
that is observed through a measurement matrix according to

, it is assumed that has only a few nonzero entries. A
fundamental observation is that if is chosen properly and is
sufficiently sparse, then can be recovered from , irre-
spectively of the locations of the nonzero entries of , even if
has far fewer rows than columns. This result has given rise to a
multitude of different recovery algorithms which can be proven
to recover a sparse vector under a variety of different condi-
tions on [1], [3]–[6].

Three widely studied recovery algorithms are the basis
pursuit (BP), or -minimization approach [1], [7], the matching
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pursuit (MP), and the orthogonal matching pursuit (OMP) algo-
rithm [8], [9]. One of the main tools for the characterization of
the recovery abilities of BP is the restricted isometry property
(RIP) [1], [10]. Specifically, if the measurement matrix
satisfies the RIP with appropriate restricted isometry constants,
then can be recovered by BP. Unfortunately, determining
the RIP constants of a given matrix is in general an NP-hard
problem. A more simple and convenient way to characterize
recovery properties of a dictionary is via the coherence measure
[5], [11], [12]. It was shown in [5], [13], and [14] that appro-
priate conditions on the coherence guarantee that BP, MP, and
OMP recover the sparse vector . The coherence also plays an
important role in uncertainty relations for sparse signals [11],
[12], [15].

In this paper, we consider efficient methods for the recovery
of sparse signals that exhibit additional structure in the form
of the nonzero coefficients occurring in clusters. Such signals
are referred to as block-sparse [16], [17]. Our goal is to ex-
plicitly take this block structure into account, both in terms of
the recovery algorithms and in terms of the measures that are
used to characterize their performance. The significance of the
results we obtain lies in the fact that making explicit use of
block-sparsity can provably yield better reconstruction proper-
ties than treating the signal as being sparse in the conventional
sense, thereby ignoring the additional structure in the problem.

Block-sparsity arises naturally, e.g., when dealing with
multi-band signals [18]–[21] or in measurements of gene
expression levels [22]. Another interesting special case of the
block-sparse model appears in the multiple measurement vector
(MMV) problem, which deals with the measurement of a set of
vectors that share a joint sparsity pattern [16], [23]–[26]. Fur-
thermore, it was shown in [16] and [17] that the block-sparsity
model can be used to treat the problem of sampling signals that
lie in a union of subspaces [15], [16], [18], [19], [27]–[31].

One approach to exploiting block-sparsity is by suitably ex-
tending the BP method, resulting in a mixed -norm re-
covery algorithm [16], [32]. It was shown in [16] that if has
small block-restricted isometry constants, which generalizes the
conventional RIP notion, then the mixed norm method is guar-
anteed to recover any block-sparse signal, irrespectively of the
locations of the nonzero blocks. Furthermore, recovery will be
robust in the presence of noise and modeling errors (i.e., when
the vector is not exactly block-sparse). It was also established
in [16] that certain random matrices satisfy the block RIP with
overwhelming probability, and that this probability is substan-
tially larger than that of satisfying the standard RIP. In [33] ex-
tensions of the CoSaMP algorithm [34] and of iterative hard
thresholding [35] to the model-based setting, which includes
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block-sparsity as a special case, are proposed and shown to ex-
hibit provable recovery guarantees and robustness properties.

The focus of the present paper is on developing a parallel
line of results by generalizing the notion of coherence to the
block setting. This can be seen as extending the program laid
out in [5] and [13] to the block-sparse case. Specifically, we
define two separate notions of coherence: coherence within a
block, referred to as sub-coherence and capturing local prop-
erties of the dictionary, and block-coherence, describing global
dictionary properties. We will show that both coherence notions
are necessary to characterize the essence of block-sparsity. We
present extensions of the BP, the MP, and the OMP algorithms
to the block-sparse case and prove corresponding performance
guarantees.

We point out that the term block-coherence was used pre-
viously in [36] in the context of quantifying the recovery per-
formance of the MP algorithm in block-incoherent dictionaries.
Our definition of block-coherence pertains to block-versions of
the MP and the OMP algorithm and is different from that used
in [36].

The concept of block-sparsity was previously introduced and
studied in the statistics literature in the context of the so-called
group Lasso estimator [37]–[42]. The main focus of this paper
and the novelty vis-à-vis these references are explicit recovery
guarantees for block-versions of BP and OMP in terms of prop-
erties of the dictionary characterized through block-coherence
and sub-coherence. In addition, compared to previous work on
the group Lasso estimator, our results do not depend on specific
assumptions on dictionary properties such as, e.g., intrablock
orthogonality, specific block sizes, or the asymptotic regime.
Moreover, we establish uncertainty relations for block-sparse
signals, which appear to be new. Our work can be seen as ex-
tending the program laid out in [5] and [11]–[13], [43] to the
block-sparse setting.

We begin, in Section II, by introducing our definitions of
block-coherence and sub-coherence. In Section III, we estab-
lish an uncertainty relation for block-sparse signals, and we
show how the block-coherence measure defined previously oc-
curs naturally in this uncertainty relation. In Section IV, we in-
troduce a block version of the OMP algorithm, termed BOMP,
and of the MP algorithm [9], termed BMP. We then derive a suf-
ficient condition on block-coherence to guarantee recovery of
block -sparse signals through BOMP in no more than steps
as well as exponential convergence of BMP. The same condition
on block-coherence is shown to guarantee successful recovery
through the mixed -optimization approach. The BOMP al-
gorithm can be viewed as an extension of the subspace OMP al-
gorithm for recovery in the MMV setup [26]. The proofs of our
main results are contained in Section V. A discussion on the per-
formance improvements that can be obtained through exploiting
block-sparsity is provided in Section VI. Corresponding numer-
ical results are reported in Section VII.

Throughout the paper, we denote vectors by boldface lower-
case letters, e.g., , and matrices by boldface uppercase letters,
e.g., . The identity matrix is written as or when the di-
mension is not clear from the context. For a given matrix ,

, , and denote its transpose, conjugate transpose,
and trace, respectively, is the pseudo inverse, denotes

the range space of , is the element in the row and
column of , and stands for the column of . The
element of a vector is denoted by . The Euclidean norm of
the vector is , is the -norm,

is the -norm, and designates the
number of nonzero entries in . The Kronecker product of the
matrices and is written as . The spectral norm of

is denoted by , where is the
largest eigenvalue of the positive-semidefinite matrix .

II. BLOCK-SPARSITY AND BLOCK-COHERENCE

A. Block-Sparsity

We consider the problem of representing a vector in
a given dictionary of size with , so that

(1)

for a coefficient vector . Since the system of equations
(1) is underdetermined, there are, in general, infinitely many
choices of that satisfy (1) for a given . Therefore, further
assumptions on are needed to guarantee uniqueness of the rep-
resentation. Here, we consider the case of sparse vectors , i.e.,

has only a few nonzero entries relative to its dimension. The
standard sparsity model treated in compressed sensing [1], [2]
assumes that has at most nonzero elements, which can ap-
pear anywhere in the vector. As discussed in [16], [17] there are
practical scenarios that involve vectors with nonzero entries
appearing in blocks (or clusters) rather than being arbitrarily
spread throughout the vector. Specific examples include signals
that lie in unions of subspaces [16], [27]–[29], [31], and multi-
band signals [18], [19], [21].

The recovery of block-sparse vectors from measurements
is the focus of this paper. To define block-sparsity, we

view as a concatenation of blocks—assumed throughout the
paper to be of length —with denoting the block, i.e.,

(2)

where . We furthermore assume that with
integer. Similarly to (2), we can represent as a concatenation
of column-blocks of size :

(3)

A vector is called block -sparse if has nonzero
Euclidean norm for at most indices . When , block-
sparsity reduces to conventional sparsity as defined in [1] and
[2]. Denoting

(4)

with the indicator function , a block -sparse vector is
defined as a vector that satisfies . In the remainder
of the paper conventional sparsity will be referred to simply as
sparsity, in contrast to block-sparsity.

We are interested in providing conditions on the dictionary
ensuring that the block-sparse vector can be recovered from
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measurements of the form (1) through BMP, BOMP, and a
mixed -optimization program (referred to as L-OPT [16]).
Our approach is partly based on [5] and [12]–[14] (and the math-
ematical techniques used therein) where equivalent results are
provided for the sparse case. It was shown in [16] that L-OPT
yields perfect recovery if the dictionary satisfies appropriate
restricted isometry properties. The purpose of this paper is to
provide recovery conditions for BMP, BOMP, and L-OPT based
on a suitably defined measure of block-coherence. We will see
that block-coherence plays a role similar to coherence in the
case of conventional sparsity.

Before defining block-coherence, we note that in order to
have a unique block -sparse satisfying (1) it is clear that
we need and the columns within each block

, need to be linearly independent. More generally,
we have the following proposition taken from [16].

Proposition 1: The representation (1) is unique for all block
-sparse vectors if and only if for every that

is block -sparse.

From Proposition 1 it follows that uniqueness of the represen-
tation (1) implies linear independence of the columns of
for all . Throughout the paper, we assume that the dictionaries
we consider satisfy the condition of Proposition 1, and, further-
more, .

B. Block-Coherence

The coherence of a dictionary measures the similarity be-
tween its elements, and is defined by [5], [11], [12]

(5)

This definition was introduced in [9] to heuristically charac-
terize the performance of the MP algorithm, and was later shown
to play a fundamental role in quantifying recovery thresholds for
the OMP algorithm and for BP [5]. The coherence further-
more occurs in -uncertainty relations relevant in the context
of decomposing a vector into two orthonormal bases [11], [12].
A definition of coherence for analog signals, along with a cor-
responding uncertainty relation, is provided in [15].

It is natural to seek a generalization of coherence to the
block-sparse setting with the resulting block-coherence mea-
sure having the same operational significance as the coherence

in the sparse case. Below, we propose such a generalization,
which is shown—in Sections III and IV—to occur naturally
in uncertainty relations and in recovery thresholds for the
block-sparse case.

We define the block-coherence of as

(6)

with

(7)

Note that is the th block of the matrix
. When , as expected, . While

quantifies global properties of the dictionary , local properties
are characterized by the sub-coherence of , defined as

(8)

We define for . In addition, if the columns of
are orthonormal for each , then .

Since the columns of have unit norm, the coherence in
(5) satisfies and therefore, as a consequence of

, we have . The following proposition establishes
the same limits for the block-coherence , which explains the
choice of normalization by in its definition (6).

In the remainder of the paper, conventional coherence will be
referred to simply as coherence, in contrast to block-coherence
and sub-coherence.

Proposition 2: The block-coherence satisfies
.

Proof: Since the spectral norm is non-negative, clearly
. To prove that , note that the entries of

for have absolute value smaller than or equal to . It then
follows that

(9)

(10)

where (9) is a consequence of Geršgorin’s disc theorem [44,
Corollary 6.1.5].

From , with Proposition 2, it now follows trivially that
.

When the columns of are orthonormal for each , we can
further bound .

Proposition 3: If consists of orthonormal blocks, i.e.,
for all , then .

Proof: Using the submultiplicativity of the spectral norm,
we have

(11)

The equality in (11) follows from , for all ,
, and

combined with the definition of the spectral norm.
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III. UNCERTAINTY RELATION FOR BLOCK-SPARSE SIGNALS

We next show how the block-coherence defined above
naturally appears in an uncertainty relation for block-sparse sig-
nals. This relation generalizes the corresponding result for the
sparse case derived in [11] and [12].

Uncertainty relations for sparse signals are concerned with
representations of a vector in two different orthonormal
bases for : and [11], [12].
Any vector can be expanded uniquely in terms of each
one of these bases according to

(12)

The uncertainty relation sets limits on the sparsity of the decom-
positions (12) for any . Specifically, denoting
and , it is shown in [12] that

(13)

where is the coherence between and , defined as

(14)

It is easily seen that for consisting of the orthonormal bases
and , i.e., , we have , where is as

defined in (5) and associated with .
In [11] it is shown that . The upper

bound follows from the Cauchy-Schwarz inequality and the fact
that the basis elements have norm 1. The lower bound is ob-
tained as follows: The matrix is unitary so that

. Con-
sequently, we have which implies

. This lower bound can be achieved, for ex-
ample, by choosing the two orthonormal bases and as the
spike (identity) and Fourier bases [11]. With this choice, the un-
certainty relation (13) becomes

(15)

When is an integer, the relations in (15) can all be satisfied
with equality by choosing as a Dirac comb with spacing

, resulting in nonzero elements. This follows from the
fact that the Fourier transform of is also .

We now develop an uncertainty relation for block-sparse sig-
nals. Specifically, we derive a result that is equivalent to (13)
with and replaced by block-sparsity levels as defined in
(4), and replaced by the block-coherence between the
orthonormal bases considered, and defined below in (18).

Theorem 1: Let be two unitary matrices with
blocks and let satisfy

(16)

Let and . Then

(17)

where

(18)

Note that for consisting of the orthonormal bases and
, i.e., , we have , where is as

defined in (6) and associated with .
Proof: The following proof generalizes the corresponding

proof in [12] to block sizes . Without loss of generality,
we assume that . Then

(19)

(20)

where we set . Now, from the Cauchy-
Schwarz inequality, for any , , we have

(21)

where, for brevity, we wrote . Substituting into
(19), we get

(22)

Applying the Cauchy-Schwarz inequality yields

(23)

where we used the fact that
since and is unitary. Similarly, we have that

. Substituting into (22) and using the
inequality of arithmetic and geometric means completes the
proof.

The bound provided by Theorem 1 can be tighter than that
obtained by applying the conventional uncertainty relation (13)
to the block-sparse case. This can be seen by using

and in (13) to obtain

(24)

Since , this bound may be looser than (17).

A. Block-Incoherent Dictionaries

As already noted, in the sparse case (i.e., ) for any two
orthonormal bases and , we have . We next show
that a similar inequality holds for the block-coherence.

Proposition 4: The block-coherence (18) satisfies
.
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Proof: Let and be two orthonormal bases for and
let with denoting the th block of

. With , we have

(25)

Now,

(26)
Since is a square matrix consisting of orthonormal columns,
we have . Furthermore, since

consists of orthonormal columns, for each , we have
. Therefore, (25) becomes

(27)

which concludes the proof.
We now construct a pair of bases that achieves the lower

bound in (27) and therefore has the smallest possible block-co-
herence. Let be the DFT matrix of size with

. Define and

(28)

where is an arbitrary unitary matrix. For this choice,
. Since and ,

we get

(29)

When , this basis pair reduces to the spike-Fourier pair
which is well known to be maximally incoherent [11].

When satisfies (29) the uncertainty relation becomes

(30)

If is integer, the inequalities in (30) are met with equality for
the signal where is an arbitrary nonzero length-
vector. Indeed, in this case, the representation of in the spike
basis requires blocks (of size ), so that . The
representation of in the basis in (28) is obtained as

(31)

where we used the fact that the Fourier transform of is also
. Therefore, has nonzero blocks so that
and hence , which implies that all inequali-

ties in (30) are met with equality.

IV. EFFICIENT RECOVERY ALGORITHMS

We now give operational meaning to block-coherence by
showing that if it is small enough, then a block-sparse signal
can be recovered from the measurements using either

the mixed -optimization program (L-OPT) proposed in
[16]

(32)

or an extension of the MP and OMP algorithms [9] to the
block-sparse case described below and termed block-MP
(BMP) and block-OMP (BOMP), respectively. We then derive
thresholds on the block-sparsity level as a function of and

for both methods to recover the correct block-sparse . For
L-OPT this complements the results in [16] that establish the
recovery capabilities of L-OPT under the condition that
satisfies a block-RIP with a small enough restricted isometry
constant. For the special case of the columns of being
orthonormal for each , we suggest a block-version of the MP
algorithm [9], termed block-MP (BMP).

A. Block OMP and Block MP

The BOMP algorithm begins by initializing the residual as
. At the th stage ( ) we choose the block that is

best matched to according to

(33)

Once the index is chosen, we find as the solution to

(34)

where is the set of chosen indices . The residual
is then updated as

(35)

In the special case of the columns of being orthonormal
for each (the elements across different blocks do not have to
be orthonormal), we consider an extension of the MP algorithm
to the block-case. The resulting algorithm, termed BMP, starts
by initializing the residual as and at the th stage ( )
chooses the block that is best matched to according to (33).
Then, however, the algorithm does not perform a least-squares
minimization over the blocks that have already been selected,
but directly updates the residual according to

(36)

B. Recovery Conditions

Our main result, summarized in Theorems 2 and 3 below, is
that any block -sparse vector can be recovered from measure-
ments using either the BOMP algorithm or L-OPT if
the block-coherence satisfies .
In the special case of the columns of being orthonormal for
each , we have and therefore the recovery condition be-
comes . In this setting BMP exhibits exponen-
tial convergence rate (see Theorem 4). If the block-sparse vector

was treated as a (conventional) -sparse vector without ex-
ploiting knowledge of the block-sparsity structure, a sufficient
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condition for perfect recovery using OMP [5] or (32) for
(known as BP) is . Comparing with

, we can see that, thanks to , making ex-
plicit use of block-sparsity leads to guaranteed recovery for a
potentially higher sparsity level. Later, we will establish such a
result for the case of general .

To formally state our main results, suppose that is a
length- block -sparse vector, and let . Let
denote the matrix whose blocks correspond to
the nonzero blocks of , and let be the matrix of size

which contains the blocks of that are not
in . We then have the following theorem, which generalizes
the exact recovery condition provided in [5] to the case .
The proof of the theorem appears in Section V.

Theorem 2: Let be a block -sparse vector with
blocks of length , and let for a given matrix .
A sufficient condition for the BOMP and the L-OPT algorithm
to recover is that

(37)

where

(38)

and is the th block of . In this case, BOMP
picks up a correct new block in each step, and consequently
converges in at most steps.

Note that

(39)

Therefore, (37) implies that for all

(40)

The sufficient condition (37) depends on and therefore
on the location of the nonzero blocks in , which, of course, is
not known in advance. Nonetheless, as the following theorem,
proved in Section V, shows, (37) holds universally under certain
conditions on and associated with the dictionary .

Theorem 3: Let be the block-coherence and the sub-
coherence of the dictionary . Then (37) is satisfied if

(41)

For , and therefore , we recover the corresponding
condition reported in [5] and [13]. In the
special case where the columns of are orthonormal for each
, we have and (41) becomes

(42)

The next theorem shows that under condition (42), BMP ex-
hibits exponential convergence rate in the case where each block

consists of orthonormal columns.

Theorem 4: If , for all , and
, then we have:

1) BMP picks up a correct block in each step.
2) The energy of the residual decays exponentially, i.e.,

with

(43)

V. PROOFS OF THEOREMS 2, 3, AND 4

Before proceeding with the actual proofs, we start with some
definitions and basic results that will be used throughout this
section.

For , we define the general mixed -norm (
here and in the following):

(44)

and the are consecutive length- blocks. For an
matrix with and , where and are
integers, we define the mixed matrix norm (with block size )
as

(45)

The following lemma provides bounds on , which will
be used in the sequel.

Lemma 1: Let be an matrix with and
. Denote by the th block of .

Then,

(46)

(47)

In particular, .

Proof: See Appendix A.

Lemma 2: as defined in (38) is a matrix norm and as
such satisfies the following properties:

• Non-negative:
• Positive: if and only if
• Homogeneous: for all
• Triangle inequality:
• Submultiplicative: .

Proof: See Appendix B.
The proofs of Theorems 2 and 3 follow closely the proof pro-

gram laid out in [5] for the case with appropriate modifi-
cations accounting for the block structure.

A. Proof of Theorem 2 for BOMP

We begin by proving that (37) is sufficient to ensure recovery
using the BOMP algorithm. We first show that if is in

), then the next chosen index will correspond to a block
in . Assuming that this is true, it follows immediately that
is correct since clearly lies in . Noting that
lies in the space spanned by and , where de-
notes the indices chosen up to stage , it follows that if cor-
responds to correct indices, i.e., is a block of for all
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, then also lies in ) and the next index will be
correct as well. Thus, at every step a correct block of is
selected. As we will show below no index will be chosen twice
since the new residual is orthogonal to all the previously chosen
subspaces spanned by the columns of the blocks , ;
consequently the correct will be recovered in steps.

Suppose that . Then, under (37), the next
chosen index corresponds to a block in . This is equivalent
to requiring that

(48)

From the properties of the pseudo-inverse, it follows that
is the orthogonal projector onto . Hence, it holds that

. Since is Hermitian, we have

(49)

Substituting (49) into (48) yields

(50)

where we used Lemma 1.
It remains to show that BOMP in each step chooses a new

block participating in the (unique) representation . We
start by defining where

. It follows that the solution of the minimization problem
in (34) is given by

(51)

which upon inserting into (35) yields

(52)

Now, we note that is the orthogonal pro-
jector onto the range space of . Therefore
for all blocks that lie in the span of the matrix . By the
assumption in Proposition 1 we are guaranteed that as long as

there exists at least one block in which does not lie
in the span of . Since this block will lead to strictly positive

the result is established, concluding the proof.

B. Proof of Theorem 2 for L-OPT

We next show that (37) is also sufficient to ensure recovery
using L-OPT. To this end we rely on the following lemma:

Lemma 3: Suppose that with , for
all , and that is a matrix of size , with
and the blocks . Then, .
If in addition the values of are not all equal, then the
inequality is strict. Here, is a matrix that is all zero
except for the th block which equals .

Proof: See Appendix C.
To prove that L-OPT recovers the correct vector , let
be another length- block -sparse vector for which

. Denote by and the length- vectors consisting of
the nonzero elements of and , respectively. Let and
denote the corresponding columns of so that

. From the assumption in Proposition 1, it follows that there
cannot be two different representations using the same blocks

. Therefore, must contain at least one block, , that is
not included in . From (40), we get . For any
other block in , we must have that

(53)

Indeed, if , then for some where
was defined in Lemma 3. In this case, and,

therefore, . If, on the other hand,
for some , then it follows from (40) that .

Now, suppose first that the blocks in do not
all have the same1 . Then,

(54)

(55)

where the first equality is a consequence of the columns of
being linearly independent (a consequence of the assumption
in Proposition 1), the first inequality follows from Lemma 3
since , for all , and the last inequality follows from
(53). If all the blocks in have identical , then
the inequality (54) is no longer strict, but the second inequality
(55) becomes strict instead as a consequence of ;
therefore still holds.

Since and , we con-
clude that under (40), any set of coefficients used to represent
the original signal that is not equal to will result in a larger

-norm.

C. Proof of Theorem 3

We start by deriving an upper bound on in terms
of and . Writing out , we have that

(56)

Submultiplicativity of (Lemma 2) implies that

(57)

where is the set of indices for which is in . Since
contains indices, the last term in (57) is bounded above by

, which allows us to conclude that

(58)

It remains to develop a bound on . To this
end, we express as , where is a

matrix with blocks of size such that

1Note that for an ������ matrix�, � ��� � �������, where����� � �
�� �� � � � � �, denotes the � � � block of � made up of the rows ��� � ��� 	
�� � � � � ���.
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, for all . This follows from the fact that the columns of
are normalized. Since , for all ,

and , we have

(59)

(60)

where the first term in (60) is obtained by applying Geršgorin’s
disc theorem [44, Corollary 6.1.5] together with the definition
of ; the second term in (60) follows from the fact that the sum-
mation in the second term of (59) is over elements and

, for all , can be upper-bounded by . As-
sumption (41) now implies that and
therefore, from (60), we have .

We next use the following result.

Lemma 4: Suppose that . Then
.

Proof: Follows immediately by using the fact that
is a matrix norm (cf. Lemma 2) and applying [44, Corollary
5.6.16].

Thanks to Lemma 4, we have that

(61)

(62)

Here, (61) is a consequence of satisfying the triangle in-
equality and being submultiplicative and (62) follows by using
(60).

Combining (62) with (58), we get

(63)

where the last inequality is a consequence of (41).

D. Proof of Theorem 4

The proof of the first part of Theorem 4 follows from the
arguments in the proofs of Theorems 2 and 3 for . As a
consequence of the first statement of Theorem 4, we get that the
residual in each step of the algorithm will be in . For
the proof of the second statement in Theorem 4, we mimic the
corresponding proof in [14]. We first need the following lemma,
which is an extension of [45, Lemma 3.5] to the block-sparse
case. This lemma will provide us with a lower bound on the
amount of energy that can be removed from the residual in
one step of the BMP algorithm.

Lemma 5: Let denote the matrix whose blocks
correspond to the nonzero blocks of . Then, we have

(64)

where is the coefficient vector corresponding to , i.e.,
.

Proof: We start by noting that
, where for at least one index
. Therefore,

(65)

The result then follows by noting that
.

Next, we compute an upper bound on . With
, where , we get

(66)

where we used the fact that , for all , as a conse-
quence of each of the blocks of consisting of orthonormal
vectors. Applying the Cauchy-Schwarz inequality to the second
term in (66), we have

(67)

(68)

where stands for modulo , (67) follows
from , and (68) is obtained
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by merely rearranging terms in the summation in (67). Ap-
plying the Cauchy-Schwarz inequality to the inner product

, we obtain

(69)

where (69) follows by the same argument as used in (23). Com-
bining (65) with (69) leads to

(70)

The proof is then completed by noting that by the first statement
in Theorem 4, BMP picks a block in in each step. Therefore,
we can bound the energy of the residual in the st step as

(71)

(72)

where in (71) we used the fact that is orthogonal to
.

VI. DISCUSSION

Theorem 3 indicates under which conditions exploiting
block-sparsity leads to higher recovery thresholds than treating
the block-sparse signal as a conventionally sparse signal. For
dictionaries where the individual blocks consist of
orthonormal columns for each , we have . Therefore,
thanks to , recovery through exploiting block-sparsity
is guaranteed for a potentially higher sparsity level. If the indi-
vidual blocks are, however, not orthonormal, then ,
and (41) shows that has to be small for block-sparse recovery
to result in higher recovery thresholds than sparse recovery.

It is natural to consider the case where one starts with a
general dictionary and orthogonalizes the individual blocks

so that . The comparison that is meaningful here
is between the recovery threshold of the original dictionary
without exploiting block-sparsity and the recovery threshold
of the orthogonalized dictionary taking block-sparsity into
account. To this end, we start by noting that the assumption in
Proposition 1 implies that the columns of are linearly in-
dependent, for each . We can therefore write
where consists of orthonormal columns that span
and is invertible. The orthogonalized dictionary is given
by the matrix with blocks . Since
with the block-diagonal matrix with blocks ,
we conclude that is block-sparse and—thanks to the
invertibility of the —of the same block-sparsity level as

, i.e., orthogonalization preserves the block-sparsity level. It
is easy to see that the definition of block-coherence in (6) is
invariant to the choice of orthonormal basis for .

This is because any other basis has the form for some
unitary matrix , and from the properties of the spectral norm

(73)

for any unitary matrices .
Unfortunately, it seems difficult to derive general results on

the relation between before and after orthogonalization.
Nevertheless, we can establish a minimum block size above
which orthogonalization followed by block-sparse recovery
leads to a guaranteed improvement in the recovery thresholds.
We first note that the coherence of a dictionary consisting of

elements in a vector space of dimension can
be lower-bounded as [46]

(74)

Using this lower bound together with Proposition 3 and the fact
that after orthogonalization we have , it can be shown that
if , then the recovery threshold obtained
from taking block-sparsity into account in the orthogonalized
dictionary is higher than the recovery threshold corresponding
to conventional sparsity in the original dictionary. This is true
irrespectively of the dictionary we start from as long as it satis-
fies the conditions of Proposition 1.

Finally, we note that finding dictionaries that lead to sig-
nificant improvements in the theoretical recovery thresholds
when exploiting block-sparsity seems to be a difficult design
problem, especially in the most general case where the blocks
of the dictionary do not consist of orthonormal columns. For
example, partitioning the realizations of i.i.d. Gaussian ma-
trices into blocks will, in general, not lead to satisfactory results
in the sense that the theoretical recovery thresholds taking
block-sparsity into account are not significantly larger than
the conventional sparsity thresholds. However, we note that
the theoretical thresholds are extremely pessimistic and sim-
ulation results presented below suggest that the performance
of recovery algorithms are far better than the corresponding
theoretical guarantees. Nevertheless, there do exist dictionaries
where significant improvements also in the theoretical recovery
thresholds are possible.

Consider, for example, the pair of bases and
shown in Section III-A to achieve the lower bound in (27).

For the corresponding dictionary , we have
, , with the recovery threshold, assuming

that block-sparsity is exploited, given by .
The coherence of the dictionary is .
Fig. 1, obtained by averaging over randomly chosen unitary ma-
trices , shows that the recovery thresholds for dictionaries of
the form obtained by taking block-spar-
sity into account can be significantly higher than those for con-
ventional sparsity. Here, is chosen randomly according to

where is a i.i.d. Gaussian matrix.
In particular, for , we obtain the conventional recovery
threshold as , which allows us to con-
clude that exploiting block-sparsity can result in guaranteed re-
covery for a sparsity level that is times higher than what would
be obtained in the (conventional) sparse case.
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Fig. 1. Recovery thresholds for both block-sparsity and conventional sparsity
for � � �� as a function of �.

Fig. 2. Performance of OMP, BOMP, and BOMP-O for a dictionary with � �

��� � � ���, and � � �.

Fig. 3. Performance of OMP, BOMP, and BOMP-O for a dictionary with � �

��� � � ���, and � � �.

VII. NUMERICAL RESULTS

The aim of this section is to quantify the improvement in
the recovery properties of OMP and BP obtained by taking
block-sparsity explicitly into account and performing recovery
using BOMP and L-OPT, respectively. In all simulation exam-
ples below, we randomly generate dictionaries by drawing from
i.i.d. Gaussian matrices and normalizing the resulting columns
to have norm 1. The dictionary is divided into consecutive

Fig. 4. Performance of BP, L-OPT, L-OPT-O, and BOMP-O for a dictionary
with � � ��� � � ���, and � � �.

Fig. 5. Performance of BP, L-OPT, L-OPT-O, and BOMP-O for a dictionary
with � � ��� � � ���, and � � �.

blocks of length . The sparse vector to be recovered has i.i.d.
Gaussian entries on the randomly chosen support set according
to a uniform prior, i.e., the locations of the nonzero blocks
of the block- sparse vector are chosen uniformly at random
among all possible locations.

In Figs. 2 and 3, we plot the recovery success rate2 as a func-
tion of the block-sparsity level of the signal to be recovered.
For each block-sparsity level we average over 1000 pairs of
realizations of the dictionary and the block-sparse signal. We
can see that BOMP outperforms OMP significantly and BOMP
with orthogonalized blocks, denoted as BOMP-O, yields
slightly better performance than BOMP. We also evaluate the
performance of L-OPT compared to BP, as well as L-OPT
run on orthogonalized blocks, termed L-OPT-O. For each
block-sparsity level we average over 200 pairs of realizations of
the dictionary and the block-sparse signal. The corresponding
results, depicted in Figs. 4 and 5, show that L-OPT outperforms
BP, and L-OPT-O slightly outperforms L-OPT. Furthermore,
we can see that BOMP-O significantly outperforms L-OPT-O.

Next, we compare the numerical results depicted in Figs. 3
and 5 for , , and to the analytical thresh-
olds (41) and (42) and to the thresholds for conventional sparsity
reported in [5], [13], and [43]. Specifically, for each realization

2Success is declared if the recovered vector is within a certain small Euclidean
distance of the original vector.
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of the random dictionary, we compute the corresponding analyt-
ical thresholds and find the following average analytical thresh-
olds (over all realizations of the dictionary):

• BOMP and L-OPT:
• BOMP-O and L-OPT-O:
• OMP and BP: .

Evidently, the analytical thresholds are more pessimistic than
the numerical thresholds in Figs. 3 and 5. The latter indicate
success rates close to 100% for BOMP, BOMP-O, L-OPT, and
L-OPT-O up to a block-sparsity level of and for OMP
and BP up to .

VIII. CONCLUSION

This paper extends the concepts of uncertainty relations, co-
herence, and recovery thresholds for matching pursuit and basis
pursuit to the case of sparse signals that have block-sparsity
structure. The extension is made possible by an appropriate def-
inition of block-coherence.

The motivation for considering block-sparse signals is two-
fold. First, in many applications the nonzero elements of sparse
vectors tend to cluster in blocks; several examples are given in
[16]. Second, it is shown in [16] that sampling problems over
unions of subspaces can be converted into block-sparse recovery
problems. Specifically, this is true when the union has a di-
rect-sum decomposition, which is the case in many applications
including multiband signals [18]–[20], [29]. As a consequence
we obtain the first general class of concrete recovery methods
for union of subspace problems. This was the main contribu-
tion of [16] together with equivalence and robustness proofs for
L-OPT based on a suitably modified definition of the restricted
isometry property. Here, we complement this contribution by
developing similar results using the concept of block-coherence.

Interesting avenues of further research on block-sparsity in-
clude investigating the stability of BOMP in the presence of
noise (as done in [47] for the case) and finding recovery
guarantees for mixed -norm algorithms (see [48] and ref-
erences therein).

APPENDIX A
PROOF OF LEMMA 1

We first prove (46):

(75)

Therefore, for any with , we have

(76)

which establishes (46). The proof of (47) is similar:

(77)

from which the result follows. Finally, we have
.

APPENDIX B
PROOF OF LEMMA 2

Nonnegativity and positivity follow immediately from the
fact that the spectral norm is a matrix norm [44, p. 295]. Ho-
mogeneity follows by noting that

(78)

The triangle inequality is obtained as follows:

(79)

(80)

where (79) is a consequence of the spectral norm satisfying the
triangle inequality.

Finally, to verify submultiplicativity, we use the fact that

(81)

Therefore, if we prove the inequality

(82)

then the result follows from (81) and the fact that
. To prove (82), note that

(83)
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where we used the triangle inequality for, and the submultiplica-
tivity of, the spectral norm. Now, we have

(84)

Substituting into (83) yields

(85)

which completes the proof.

APPENDIX C
PROOF OF LEMMA 3

The proof of the statement follows
directly from (77) by replacing by an matrix and

by with , for all . If the
are not all equal, then the last inequality in (77)

is strict. Since the result follows.
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